Why Johnny and Jane Can't Focus in the Classroom:
Vision Disorders, Learning Problems, and Vision Screening

Dr. P. Kay Nottingham Chaplin, EdD

©2017 P. Kay Nottingham Chaplin, EdD

For personal viewing only to review and refresh knowledge.
Not to be used as a stand-alone training or certification tool.
Disclaimer: Vision screening tools are examples to support national guidelines or research.

Vision screening tools are not shown for the purpose of sales or promotion.

Introduction and Disclaimer

- 16 years in vision screening field
- Former Director/Lead Trainer – Vision Initiative for Children – West Virginia University Eye Institute
- Member – Advisory Committee to the National Center for Children’s Vision and Eye Health at Prevent Blindness
- Consultant – Vision Screening Committee, American Association for Pediatric Ophthalmology and Strabismus
- Current Education and Outreach Coordinator for the National Center for Children’s Vision and Eye Health at Prevent Blindness
- Current Director – Vision and Eye Health Initiatives at Good-Lite and School Health Corporation
- Not in sales . . . Focus is encourage age-appropriate, evidence-based, and best practice vision screening as part of a strong, 12-component, Vision Health System of Care
Info You Will Take Home …
4 Learning Objectives

- List 3 classroom behaviors that could be related to vision disorders.
- List 2 evidence-based approaches to vision screening and describe what each measures.
- Describe 1 tool to screen vision during baby’s 1st year of life.
- Describe the relationship between undetected vision disorders and learning challenges.

7 Behaviors Suggesting Child May Have Vision Disorders

Behaviors are not always related to vision.
A vision disorder is something to consider when the behaviors occur.
Conduct vision screening to rule out vision as a casual factor.
Talking in class – Child said he talked because he was asking other students to help him read material on board.

Notably quiet in class – Child said she stopped looking at board... She couldn't see material on board.

“Spacy” and in own world – Interrupt story time to come forward to see book pictures. “I can see that now!”

Difficulty sitting still – Up and moving in circle time or watching TV with brother. Loner and bored. Now sits and participates in group activities.

Frustrated with “academic work” – Before glasses, “things looked dusty”. Different child, happier, less frustrated.

Squinting during class activities – “Mommy! There are numbers on that circle on the wall!”

Clumsiness until receiving glasses – “I have realized through these screenings that vision can affect a child’s behavior, balance, and academic performance.”

Observing for possible visual problems

PREVENT BLINDNESS POSITION STATEMENT ON SCHOOL-AGED VISION SCREENING AND EYE HEALTH PROGRAMS

https://nationalcenter.preventblindness.org/publications-and-presentations

Coordinate with Medical Home for referral EVEN IF students pass vision screening.

Relationship between Vision Problems and Learning
5th grade – Cs & Ds. Consistently unruly in class. After VS & glasses, behaviors calmed almost immediately. 3 mo later – Bs & working on As. “You saved my nephew.”

2015 study – low-income, ages 3 through 5 yrs – found: Improvement in academic progress, confidence & behavior - increase in focus during lessons & classroom participation & interaction

317 2nd & 3rd graders – 12 high-poverty schools – Baltimore City – Children with uncorrected hyperopia did not perform as well on reading assessments compared with children without hyperopia

2015 study – ages 4 and 5 yrs with hyperopia (farsightedness ≥4.0 D) scored significantly worse on early literacy test than children with normal vision

Diopter defined

• “Diopter” refers to the strength of a prescription lens required to give a child the clearest vision possible. The higher the number, the stronger the prescription lens.

• A child requiring 4 diopters of correction in prescription glasses, or contact lenses, would likely struggle with blurred vision, crossed eyes, or both, and would see much better with prescription glasses.

True story from Charles Short – Indiana Lions District 25C – West Lafayette, IN

- First grade reading ability found to be predictive of 11th grade reading outcomes, including:
 - Reading comprehension,
 - Vocabulary, and
 - General knowledge.

Current Evidence-Based Vision Screening Tools for Ages Birth to 3 Years

- The Infant Vision Milestones Checklist – a document for monitoring 8 vision developmental milestones during baby’s 1st year

- Instrument-based screening for ages 1 and 2 years

- Community group using evidence-based tools for ages 1 and 2 years

- Many vision milestones are related to overall developmental milestones... want you to think about those milestones from a perspective of vision... or how baby’s vision could impact milestone.

- When using the tool, start at beginning with 1st milestone and end at child’s age.
EIGHT KEY VISION DEVELOPMENT MILESTONES TO MONITOR FROM BIRTH TO FIRST BIRTHDAY

Lea Hyvarinen, MD, PhD and P. Kay Nottingham Chaplin, EdD (version 7.17.17)

- Begin with 1st milestone, regardless of child’s age.
- Check box if baby meets milestone – Check 2nd box if baby does not meet milestone and move to Next Steps. Begin with 4th milestone regardless of age and stop when milestone exceeds baby’s age.

<table>
<thead>
<tr>
<th>AGE (Milestones may vary up to 8 weeks)</th>
<th>MILESTONE</th>
<th>IMPORTANCE OF MILESTONE</th>
<th>QUESTIONS TO ASK OR BEHAVIOR TO MONITOR</th>
<th>NEXT STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to no later than 8 weeks</td>
<td>1st Milestone</td>
<td>- Maintains stable eye contact when awake and alert and initiated by parent or caregiver</td>
<td>- Does baby maintain stable eye contact when awake and alert and initiated by parent or caregiver?</td>
<td>Refer to primary care physician to coordinate eye exam referral for an assessment to include refraction and accommodation; it is possible to determine how well baby can see.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- "Halo" is defined as holding eye contact</td>
<td>- If "no", move to Next Step.</td>
<td></td>
</tr>
</tbody>
</table>

Images from Lea Hyvarinen, MD, PhD

The Infant Vision Milestones Checklist tool available at:

- http://nationalcenter.preventblindness.org/publications-and-presentations
- https://nationalcenter.preventblindness.org/sites/default/files/national/documents/8-key-development-milestones.pdf
Instruments “Approved” by NCCVEH

Welch Allyn® Spot™ Vision Screener

Plusoptix S12C Vision Screener

Welch Allyn® SureSight™ Vision Screener

Disclaimer: These tools are examples of vision screening instruments for this age group. These are not shown for the purpose of sales or promotion.

Cast of Characters

NCCVEH:
• National Center for Children’s Vision and Eye Health at Prevent Blindness

AAP:
• American Academy of Pediatrics
• American Association for Pediatric Ophthalmology and Strabismus
• American Academy of Ophthalmology
• American Association of Certified Orthoptists

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
2 Approaches to Vision Screening

1. **Optotype-based screening**
 - Tests of visual acuity using optotypes to measure visual acuity as interpreted by the brain
 - Quantifiable measurement of the sharpness or clearness of vision when identifying black optotypes on a white background using specific optotype sizes at a standardized distance

2. **Instrument-based screening**
 - Instruments do not measure visual acuity
 - Instruments analyze images of the eyes to provide information about amblyopia and reduced vision risk factors:
 - Estimates of significant refractive error (hyperopia, myopia, astigmatism)
 - Estimates of anisometropia
 - Estimates of eye misalignment (some, not all)

Threshold & Critical Line Screening

- **Threshold screening**
 - Move down chart until child cannot correctly identify majority of optotypes

- **Critical line screening**
 - Use only line child needs to pass according to child’s age
“Not so great” charts . . .

NOT Recommended by NCCVEH and/or AAP

- "Sailboat"
 - Allen Pictures
 - Lighthouse or “House, Apple, Umbrella”

- Snellen
- Tumbling E

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Why NOT Recommended?

- The use of validated and standardized optotypes and acuity charts is important for an accurate assessment of vision.
- Children may not know their letters.
- Requires discrimination of direction, which is not sufficiently developed in preschool-aged children.
- Charts not standardized.
- Not well validated in screening environment.

Importance of Appropriate Tools

- “Visual acuity scores can be significantly affected by the chart design.” (p. 1248)

- Excluding optotype size, “each visual acuity level on a test chart should present an essentially equivalent task”. (p. 740)
National and international distance visual acuity eye chart design recommendations

- **1980 - National Academy of Sciences-National Research Council (NAS-NRC)**

- **1984 - International Council of Ophthalmology (ICO)**

- **2003 - World Health Organization Prevention of Blindness & Deafness (WHO)**

- **2010 – American National Standards Institute, Inc.**

Optotypes approximately equal in legibility

Horizontal between-optotype spacing = 1 optotype width

Vertical between-line spacing = height of next line down

Geometric progression of optotype sizes of 0.1 log units (logMAR, ETDRS)

5 optotypes per line

Optotypes black on white background with luminance between 80 cd/m² and 160 cd/m²

Similar recommendations across guidelines

Design guidelines = “ETDRS” or “logMAR” chart
Tips:
• Line outside optotypes
• 20/32 vs. 20/30
• 10 feet vs. 20 feet

Do the following eye charts fit national/international eye chart design guidelines?

Yes or No?

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Preferred Optotypes for Ages 3 to 7 Years

- NCCVEH
- AAP
- Recommend LEA SYMBOLS® and HOTV letters as optotypes

Preferred Optotype Format

NCCVEH national guidelines call for using single, LEA SYMBOLS® or HOTV letter optotypes surrounded with crowding bars for children ages 3, 4, and 5 years at 5 feet

• Card with 4 optotypes – use as matching game
• Individual cards may be placed on floor in front of child – ask child to step on card matching optotype to identify

Options: Critical Line Screening at 10 feet

Sight Line Kit

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Also acceptable . . .

Preferred Optotypes for Ages 7 Years & Older

- AAP
 - Recommends Sloan Letters
- American Academy of Ophthalmology
 - Recommends Sloan Letters and LEA NUMBERS®

Options - Kits From AAPOS
(American Association for Pediatric Ophthalmology and Strabismus)

• AAPOS Vision Screening Kit

• AAPOS Vision Screening Kit: Supplemental Screening Package

• 5 or 10 feet from chart to child’s eyes

• New, standardized distance charts will be at 10 feet for children and adults

• 10/xx on left side of chart with 20/xx on right side – report 20/xx

Screening Distance
“Linear-Spaced” and “Wide-Spaced”
Want “Proportionally Spaced”

No Single Optotypes or Flashcards Without Surround Bars for Typically Developing Children

- Visual acuity results, on average, 3 lines worse on charts with lines vs. single, non-crowded optotypes
 - For example, 20/32 with single, isolated optotype and 20/80 with line chart

Occluders – Younger Children <10 Years

Unacceptable Occluders Ages 3, 4, and 5 years

- Hand
- Tissue
- Paper or plastic cup
- Cover paddle

Why unacceptable?

Children can easily peek

Occluders – Aged 10 Years and Older

To Point or Not to Point . . . ?

• Pointing to each optotype to help children know where they are on the chart is permissible.
 ❑ True or False?
 ✔
• 1.8 “Line-by-line isolation or pointing may be used, but not letter by letter

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
No Pointing at Optotypes

- Holding pointer at optotype makes optotype easier to identify.
- Instead . . . briefly point under or over top of optotype and quickly remove pointer.
- If line has a box around optotypes, stay outside the box with pointer.

- “Untestable” is not a failed vision screening.
- Keep track of “untestable” children.
- Untestable children in VIP study were 2x as likely to have vision problems than those who passed vision screening.
- If possible, rescreen untestable children same day.
- If you have reason to believe that the child may perform better on another day, consider rescreening the child no later than 6 months.

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
No Need to Read Each Optotype on Every Line

World Health Organization (2003) says:
• May be less tedious for children to read 1st optotype on left-side of chart until missing one and then moving up a line and reading entire line

Camparini et al. found:
• ETDRS-Fast (reading 1 letter per row until a mistake is made) yields accurate results compared with standard method of reading each optotype on every line.
• Also – significantly reduced test time

Referral Criteria

NCCVEH
• Age 3 years:
 • Majority of optotypes on 20/50 line
• Ages 4 and 5 years:
 • Majority of optotypes on 20/40 line
• Ages 6 years and older:
 • Majority of optotypes on 20/32 line

AAP
• Age 3 years:
 • Majority of optotypes on 20/50 line
• Ages 4 years:
 • Majority of optotypes on 20/40 line
• Ages 5 years and older:
 • Majority of optotypes on 20/32 (or 20/30) line
 • Or 2-line difference even in passing lines (i.e., 20/20 and 20/32)

Choices for Near Vision Screening

Can do critical line only with both eyes open or one eye at a time.

Plus Lens Testing is NOT a near visual acuity screening procedure

Plus-lens testing is not recommended as it is not a test of near visual acuity either directly or indirectly. It is not an evidence-based test of detecting children with significant refractive error, including moderate to high degrees of hyperopia. There is a lack of evidence of its effectiveness, and thus it does not meet current standards as an acceptable vision screening technique.

Prevent Blindness Position Statement on School-Aged Vision Screening and Eye Health Programs
https://nationalcenter.preventblindness.org/publications-and-presentations
2 Approaches to Vision Screening

1. Optotype-based screening
 - Tests of visual acuity using optotypes to measure visual acuity as interpreted by the brain
 - Quantifiable measurement of the sharpness or clearness of vision when identifying black optotypes on a white background using specific optotype sizes at a prescribed and standardized distance

2. Instrument-based screening
 - Instruments do not measure visual acuity
 - Instruments analyze images of the eyes to provide information about reduced vision and amblyopia risk factors:
 - Estimates of significant refractive error (hyperopia, myopia, astigmatism)
 - Estimates of anisometropia
 - Estimates of eye misalignment

Instrument-Based Screening

- Use beginning at 12 months; better success at 18 months (AAP)
- Use instruments OR tests of visual acuity for children ages 3, 4, and 5 years (NCCVEH and AAP)
- Instruments at any age for 6 years and older if child or young adult cannot do test of visual acuity (AAP)

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-along training or certification tool.
Instrument-Based Screening

• If use instruments, no need to also do visual acuity screening unless you want to check both VA and refractive error.

• If cannot “capture” a pass or refer result... refer child for comprehensive eye exam.

Conversion Chart: Refractive State to “estimated” Visual Acuity

<table>
<thead>
<tr>
<th>Myopia</th>
<th>Hyperopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearsighted</td>
<td>Farsighted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minus (-) Sphere</th>
<th>Plus (+) Sphere</th>
<th>Plus (+) Sphere</th>
<th>Plus (+) Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages: All</td>
<td>Estimated Visual Acuity</td>
<td>Ages: 3y to 5y</td>
<td>Ages: 25y to 30y</td>
</tr>
<tr>
<td>-0.5</td>
<td>20/90-40</td>
<td>+2.00</td>
<td>+1.25</td>
</tr>
<tr>
<td>-0.75</td>
<td>20/50</td>
<td>+3.00</td>
<td>+1.75</td>
</tr>
<tr>
<td>-1</td>
<td>20/60</td>
<td>+3.25</td>
<td>+2.50</td>
</tr>
<tr>
<td>-1.25</td>
<td>20/70</td>
<td>+3.75</td>
<td>+3.00</td>
</tr>
<tr>
<td>-1.5</td>
<td>20/100</td>
<td>+4.25</td>
<td>+3.50</td>
</tr>
<tr>
<td>-2.5</td>
<td>20/200</td>
<td>+4.75</td>
<td>+4.00</td>
</tr>
</tbody>
</table>

[1] Technical results are based upon minus (-) cylinder conversion.

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Instruments “Approved” by NCCVEH

- Welch Allyn®
 Spot™ Vision Screener
- Plusoptix
 S12C Vision Screener
- Welch Allyn®
 SureSight™ Vision Screener

Disclaimer: These tools are examples of vision screening instruments for this age group. These are not shown for the purpose of sales or promotion.

<table>
<thead>
<tr>
<th>TABLE 2.</th>
<th>Distance visual acuity testing for vision screening of children aged 36 to younger than 72 months.</th>
<th>Cotter et al. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated practice</td>
<td>Acceptable practice</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Optotype</td>
<td>Single letter or LEA Symbol</td>
<td>Rectangular counting bars surrounding a single line® or LEA letters or LEA Symbols</td>
</tr>
<tr>
<td>Test distance</td>
<td>5’(1.5 m)</td>
<td>20’(6 m)</td>
</tr>
<tr>
<td>Monocular visual acuity</td>
<td>Test or match correctly 3 or 4 out of 8,20/400 for 3-year-olds</td>
<td>Test or match correctly 5 or 6 out of 8,20/400 for 4 and 5-year-olds</td>
</tr>
<tr>
<td>Binocular testing</td>
<td>Gaze on test cards or computer screen</td>
<td></td>
</tr>
<tr>
<td>Revise vision</td>
<td>40-Diopter lens, if not used</td>
<td></td>
</tr>
<tr>
<td>Glasses</td>
<td>Single vision, single vision, single vision, or spectacles</td>
<td></td>
</tr>
<tr>
<td>Examples of commercially available products</td>
<td>Optotypes (Good Light), Sloan Letters, LEA NUMBERS®</td>
<td>Sloan Letters, LEA NUMBERS®</td>
</tr>
<tr>
<td>Notes</td>
<td>Children should be seated at the motor vehicle testing machine</td>
<td></td>
</tr>
</tbody>
</table>

Visual Acuity Testing Machines (such as Titmus, Optec, and Keystone View vision screeners)

Visual acuity testing machines screen for near and distance visual acuity and can use a variety of letter or symbol slides. Some machines can test other visual functions. Such machines prevent observation of a child’s face and eyes during screening. Child cooperation can be a problem when screening young school-aged children. Insufficient data exist to support machines as preferred practice for school-aged children. If screens choose to use machines, Sloan Letters or LEA NUMBERS® are the preferred optotypes.

Prevent Blindness Position Statement on School-Aged Vision Screening and Eye Health Programs
https://nationalcenter.preventblindness.org/publications-and-presentations

Ages 3, 4, and 5 years

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Color Vision Deficiency Screening?

- First time enter school – when considering careers

- Why? Don’t want to see Johnny in trouble for not sitting on red dot in circle time because dot looks green or brown.

- Don’t want Jane’s hopes and dreams of becoming an Air Force pilot dashed.

What to Use?

- Book with pseudoisochromatic plates

- Tip: If color books >7 years, upgrade; colors desaturate

- Use Q-tip, not fingers; oil from fingers will desaturate colors
Stereoacuity for “muscle imbalance”

- Stereoacuity screening is **not** recommended for preschool- or school-aged children.

- **If mandated to do stereoacuity, NCCVEH recommends PASS™ 2.**

Why Not Random Dot E?

- Low testability and sensitivity in 1st phase of Vision in Preschoolers Study looking at appropriate vision screening tools.

- Elise Ciner, OD, stereoacuity expert with VIP:
 - High untestability rate compared with Stereo Smile (PASS II).
 - **Concerns with 50 cm vs. 40 cm (16 in.) screening distance.**
 - Unclear whether 550 sec arc stereo level is sensitive enough to detect visual conditions.
Certain children with higher rates of vision disorders may need to be referred for a comprehensive eye examination, even if they pass their vision screening. - NCCVEH

Readably observable ocular abnormalities
- Strabismus
- Ptosis

Neuro-developmental disorders, such as:
- Hearing impairment
- Motor, such as CP
- Down Syndrome
- Cognitive impairment
- Autism Spectrum Disorder
- ADHD

Systemic conditions with ocular abnormalities, such as:
- Diabetes
- Strabismus
- Juvenile Arthritis
- Amblyopia

Parents or siblings with history of:

History of prematurity:
- < 32 completed weeks

Parents who believe their child has vision problem:
- Coordinate with Medical Home to refer for eye exam

References for previous slide:

When Screening All Children . . .

- Use same vision screening tools you use with all children.
- If children are untestable, refer to child’s medical provider.
- If children pass, explain to parents that the screening result does not check for everything.
- Because these children are at a higher risk of having an eye disorder . . .
 - A comprehensive eye exam remains recommended for these children.

Consensus of the Technical Guidance Subcommittee to the National Center for Children’s Vision and Eye Health – 2.16.17.
Subcommittee includes pediatric ophthalmologists and pediatric optometrists.

Vision Screening is . . .

- Part of a process…not a single event.
- 1 of 12 components of a strong vision health system of care.
Evaluating Your Vision Health Program

Annual Vision Health Program Evaluation Checklist

Evaluation Date:

Completed By:

Instructions: Review each component described below. Select the “Yes,” “No,” or “Not Applicable” response that best describes your vision health program as it currently operates. Please note comments in the area indicated. Once you have responded to the components on each program, complete the “Vision Health System of Care” located on page 7 to identify areas for action/awareness or improvement in your program.

1. Our vision program ensures that it provides/receives/revives educational material, which respects cultural and language needs, about the importance of:
 a. Good vision for their child now and in the future.
 b. School-aged children or re-examine when their child does not pass vision screening.
 c. Increased risk for vision problems in different high-risk populations.

Check Yes/No

Need for Evaluation

Actions Referred

Notes:

Visit: https://www.nasn.org/nasn-resources/practice-topics/vision-health

Vision and Eye Health

Moving Into the Digital Age With Instrument-Based Vision Screening

P. Kay Nottingham Chaplin, EdD
Kira Baldonado, BA
Amy Hutchinson, MD
Brien Moore, OD

Significant advancements in new screening tools are leading to improved design, functionality, and reliability of screening tests. Presently, two main screening approaches are available to school nurses for children ages 3 years and older: optotype-based screening and instrument-based screening. Optotype-based screening remains in use of visual acuity using symbols (e.g., pictures, letters, and numbers), which children identify to determine visual acuity. Instrument-based screening is implemented in automated devices that measure refraction, depth, and eye movements. Differences on instrument-based screening and optotype-based screening include the ability to screen for more children in a shorter amount of time, ability to screen for children with visual impairments, and the ability to diagnose children with strabismus and other visual anomalies.

Year of Children’s Vision

- http://nationalcenter.preventblindness.org/year-childrens-vision
- Archived vision screening webinars in Resources

National Center for Children’s Vision & Eye Health

- http://nationalcenter.preventblindness.org/

©2017 P. Kay Nottingham Chaplin, EdD For personal viewing only to review and refresh knowledge. Not to be used as a stand-alone training or certification tool.
Prevent Blindness Position Statement on School-Aged Vision Screening and Eye Health Programs

Prevent Blindness recommends a continuum of eye care for children to include both vision screening and comprehensive eye examinations. All children, even those with no signs of trouble, should have their eyes checked at regular intervals. Any child who experiences vision problems or shows symptoms of eye trouble should receive a comprehensive eye examination by an optometrist or an ophthalmologist.

Prevent Blindness, other organizations, and school health personnel often perform vision screenings for children at schools and other settings. While vision screenings and eye examinations are complementary approaches to assessing the eye problems of a child, a screening is used to identify a child at risk for vision problems and does not replace a comprehensive examination performed by an eye doctor. Additionally, vision screenings provide a critical bridge from detection to eye care for families that may not regularly access health or eye care services, may need financial assistance to afford care, or those that may not fully understand the impact an undiagnosed and untreated vision problem might have on the rest of their child’s life. Prevent Blindness advocates for good vision for all throughout the life spectrum, and that all children are visually ready as they begin school and beyond.

This document is a position statement, not formal recommendations or protocols, and is meant to guide those charged with developing, implementing and evaluating vision screening programs for school-aged students. The guidance provided in this

Helpful info and statistics for grant proposal writing . . .

NASN Vision and Eye Health Resource

(National Center for Children’s Vision and Eye Health and NASN partnership)

https://www.nasn.org/nasn-resources/practice-topics/vision-health

Prevent Blindness Children’s Vision Screening Certification Course

The Prevent Blindness Children’s Vision Screening Certification course provides participants with a certification in the most current evidence-based vision screening and eye health best practices for school-aged and preschool-aged children.

http://nationalcenter.preventblindness.org/prevent-blindness-childrens-vision-screening-certification-course

800-331-2020 Nottingham@preventblindness.org